Tris(methyldiphenylsilylmethyl)amine

By J. J. Daly and F. Sanz
Monsanto Research S.A., Eggbühlstr. 36, CH-8050 Zürich, Switzerland

(Received 15 July 1974; accepted 18 July 1974)

Abstract. Tris(methyldiphenylsilylmethyl)amine, $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{NSi}_{3}$, M.W. 648.09, rhombohedral, $R \overline{3}, a_{\text {hex }}=$ $14.942(10), c_{\text {hex }}=29.743(20) \AA, U=5750.7 \AA^{3}, d_{m}=$ $1 \cdot 126, d_{c}=1 \cdot 123 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=6, \mu($ Mo $K \alpha)=111$ m^{-1}. Monochromated data for 1079 planes were refined to a final R of 0.065 ; the structure was solved by direct methods. The molecule possesses crystallographic symmetry $3\left(C_{3}\right)$ and the geometry at the nitrogen atom is pyramidal with $\mathrm{C}-\mathrm{N}-\mathrm{C}=111.5$ (9) ${ }^{\circ}$; $\mathrm{Si}-\mathrm{C}\left(s p^{2}\right)$ is 1.875 and $\mathrm{Si}-\mathrm{C}\left(s p^{3}\right)$ is $1.873 \AA$.

Introduction. The transparent crystals show a variety of habits and the first one examined had the axes of a face-centred rhombohedral cell directed along its edges. The dimensions of this cell were measured from zero-layer precession photographs. Intensity measurements on a second crystal with $a_{\text {hex }}$ as the oscillation axis were made on a linear diffractometer (Mo $K \alpha$ radiation). Intensities with $I<2 \sigma$ were rejected and the remaining 1079 independent planes with $\theta \leq 25^{\circ}$ were used in the analysis. The structure was solved by direct methods with a program written by us for the Elliott 803B computer. The equivalent positions in the hexagonal cell have no translation vectors apart from those arising from lattice centring, so no negative signs could be found. Of the four unknown symbols used in the process two were indicated by the program to be strongly positive so these were accepted and the remaining two symbols were given a negative sign. The resulting E map was easily interpreted to give the
structure. Refinement was carried out by a blockdiagonal $(3 \times 6$ and 1×1 or $6 \times 6)$ least-squares pro-

Table 1. Final coordinates and standard deviations (\AA)

	x	y	
Si	$1 \cdot 5885(26)$	$3 \cdot 1746(25)$	$7 \cdot 8003(22)$
$\mathrm{C}(1)$	$1 \cdot 2393(88)$	$1 \cdot 5272(85)$	$6 \cdot 6653(71)$
$\mathrm{C}(2)$	$1 \cdot 8035(105)$	$2 \cdot 6365(96)$	$9 \cdot 5360(81)$
$\mathrm{C}(3)$	$3 \cdot 4595(92)$	$4 \cdot 8726(87)$	$7 \cdot 2704(77))$
$\mathrm{C}(4)$	$4 \cdot 8232(99)$	$4 \cdot 7927(110)$	$7 \cdot 3384(101)$
$\mathrm{C}(5)$	$6 \cdot 2513(101)$	$6 \cdot 0535(119)$	$7 \cdot 0338(107)$
$\mathrm{C}(6)$	$6 \cdot 3762(117)$	$7 \cdot 4249(113)$	$6 \cdot 6303(112)$
$\mathrm{C}(7)$	$5 \cdot 0540(131)$	$7 \cdot 5200(117)$	$6 \cdot 5483(138)$
$\mathrm{C}(8)$	$3 \cdot 6235(110)$	$6 \cdot 2615(103)$	$6 \cdot 8531(112)$
$\mathrm{C}(9)$	$0 \cdot 0010(86)$	$3 \cdot 6628(86)$	$7 \cdot 7264(86)$
$\mathrm{C}(10)$	$-0 \cdot 5106(106)$	$3 \cdot 8890(106)$	$6 \cdot 4723(101)$
$\mathrm{C}(11)$	$-1 \cdot 7109(121)$	$4 \cdot 2292(118)$	$6 \cdot 3965(129)$
$\mathrm{C}(12)$	$-2 \cdot 3737(121)$	$4 \cdot 3533(116)$	$7 \cdot 5758(115)$
$\mathrm{C}(13)$	$-1 \cdot 8952(126)$	$4 \cdot 1396(128)$	$8 \cdot 7941(132)$
$\mathrm{C}(14)$	$-0 \cdot 7236(111)$	$3 \cdot 8065(112)$	$8 \cdot 8696(105)$
N	$0 \cdot 0000(-)$	$0 \cdot 0000(-)$	$7 \cdot 1044(101)$
$\mathrm{H}(1 A)$	$2 \cdot 22(11)$	$1 \cdot 50(11)$	$6 \cdot 73(10)$
$\mathrm{H}(1 B)$	$1 \cdot 07(11)$	$1 \cdot 63(11)$	$5 \cdot 80(10)$
$\mathrm{H}(2 A)$	$2 \cdot 20(11)$	$3 \cdot 35(11)$	$10 \cdot 08(10)$
$\mathrm{H}(2 B)$	$0 \cdot 99(12)$	$1 \cdot 72(11)$	$9 \cdot 90(10)$
$\mathrm{H}(2 C)$	$2 \cdot 60(12)$	$2 \cdot 24(11)$	$9 \cdot 62(11)$
$\mathrm{H}(4)$	$4 \cdot 69(13)$	$3 \cdot 67(13)$	$7 \cdot 60(10)$
$\mathrm{H}(5)$	$7 \cdot 24(12)$	$5 \cdot 93(13)$	$6 \cdot 90(12)$
$\mathrm{H}(6)$	$7 \cdot 26(13)$	$8 \cdot 31(13)$	$6 \cdot 48(10)$
$\mathrm{H}(7)$	$5 \cdot 00(14)$	$8 \cdot 54(14)$	$6 \cdot 33(13)$
$\mathrm{H}(8)$	$2 \cdot 86(12)$	$6 \cdot 62(12)$	$7 \cdot 01(11)$
$\mathrm{H}(10)$	$0 \cdot 01(12)$	$3 \cdot 73(13)$	$5 \cdot 60(11)$
$\mathrm{H}(11)$	$-2 \cdot 18(14)$	$4 \cdot 12(13)$	$5 \cdot 50(12)$
$\mathrm{H}(12)$	$-3 \cdot 29(15)$	$4 \cdot 64(16)$	$7 \cdot 60(13)$
$\mathrm{H}(13)$	$-2 \cdot 37(14)$	$4 \cdot 28(15)$	$9 \cdot 53(13)$
$\mathrm{H}(14)$	$-0 \cdot 36(13)$	$3 \cdot 58(13)$	$9 \cdot 59(12)$

Table 2. Final thermal parameters and standard deviations $\left(\AA^{2}\right)$ for the heavy atoms in the form

$$
\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}\right)\right]
$$

All values have been multiplied by 10^{4}. For nitrogen $U_{11}=U_{22}=2 U_{12}, U_{23}=U_{13}=0$ by symmetry.

	U_{11}	U_{22}	U_{33}	$2 U_{12}$	$2 U_{23}$	$2 U_{13}$
Si	$471(13)$	$418(12)$	$517(11)$	$411(21)$	$-66(20)$	$-81(20)$
$\mathrm{C}(1)$	$535(49)$	$451(45)$	$431(41)$	$580(81)$	$-62(69)$	$131(72)$
$\mathrm{C}(2)$	$710(58)$	$518(52)$	$545(56)$	$445(94)$	$-5(81)$	$-250(90)$
$\mathrm{C}(3)$	$589(52)$	$405(45)$	$506(47)$	$358(77)$	$-185(71)$	$-146(75)$
$\mathrm{C}(4)$	$475(54)$	$697(63)$	$868(71)$	$599(101)$	$-158(101)$	$-177(94)$
$\mathrm{C}(5)$	$381(53)$	$900(78)$	$1003(76)$	$412(106)$	$-291(122)$	$-83(101)$
$\mathrm{C}(6)$	$644(65)$	$571(66)$	$1189(94)$	$267(105)$	$197(123)$	$260(120)$
$\mathrm{C}(7)$	$937(76)$	$608(66)$	$1371(106)$	$852(122)$	$365(128)$	$241(142)$
$\mathrm{C}(8)$	$589(60)$	$465(53)$	$1085(80)$	$357(95)$	$294(99)$	$279(108)$
$\mathrm{C}(9)$	$429(44)$	$419(47)$	$713(55)$	$538(78)$	$-96(77)$	$-91(77)$
$\mathrm{C}(10)$	$610(60)$	$542(55)$	$911(76)$	$478(97)$	$145(97)$	$-300(100)$
$\mathrm{C}(11)$	$768(72)$	$618(65)$	$1363(102)$	$618(116)$	$218(130)$	$-614(138)$
$\mathrm{C}(12)$	$741(73)$	$587(64)$	$1804(131)$	$886(121)$	$-130(138)$	$204(146)$
$\mathrm{C}(13)$	$773(74)$	$862(77)$	$1461(107)$	$963(127)$	$-367(142)$	$437(143)$
$\mathrm{C}(14)$	$622(62)$	$785(69)$	$887(69)$	$745(112)$	$-504(110)$	$-41(101)$
N	$360(36)$	$360(-)$	$456(59)$	$360(-)$	$0(-)$	$0(-)$

Fig. 1. The $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{SiPh}_{2} \mathrm{Me}\right)_{3}$ molecule projected down $\mathrm{c}_{\text {nex }}$ and the labelling of the atoms. Hydrogen atoms have been omitted for clarity; $\cos \varphi=a_{r}(1+2 \cos \alpha) / c_{\text {hex }}$.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations
$\mathrm{Si}-\mathrm{C}(1)$
$\mathrm{Si}-\mathrm{C}(2)$
$\mathrm{Si}-\mathrm{C}(3)$
$\mathrm{Si}-\mathrm{C}(9)$
$\mathrm{C}(1)-\mathrm{N}$
$\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{C}(3)-\mathrm{C}(8)$
$\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{C}(9)-\mathrm{C}(14)$
$\mathrm{C}(10)-\mathrm{C}(11)$
$\mathrm{C}(11)-\mathrm{C}(12)$
$\mathrm{C}(12)-\mathrm{C}(13)$
$\mathrm{C}(13)-\mathrm{C}(14)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}\left(1^{\prime}\right)$
$\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(2)$
$\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(3)$
$\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(9)$
$1.884(9)$
$1.861(10)$
$1.868(9)$
$1.881(9)$
$1.473(10)$
$1.407(13)$
$1.382(14)$
$1.386(15)$
$1.374(16)$
$1.375(17)$
$1.386(17)$
$1.415(13)$
$1.402(14)$
$1.404(16)$
$1.388(18)$
$1.364(18)$
$1.366(17)$
$111.5(8)$
$107.9(4)$
$106.7(4)$
$113.1(4)$
cess, first with isotropic and then with anisotropic temperature factors, and at a later stage hydrogen atoms were included with isotropic temperature factors 0.01 units of U greater than the carbon atoms to which they were bonded. Further refinement of the coordinates converged with $R\left(\sum|\Delta| / \sum\left|F_{o}\right|\right)$ at 0.065 . The quantity minimized was $R^{\prime}\left(=\sum w \Delta^{2}\right)$ with $w^{-1}=$ $\left(6 \cdot 55+\left|F_{o}\right|+0 \cdot 176\left|F_{o}\right|^{2}\right) / 8$ if $\left|F_{o}\right|>6 \cdot 55$ or $w^{-1}=(6 \cdot 55 \mid$ $\left.\left|F_{o}\right|\right)^{2}\left(6 \cdot 55+\left|F_{o}\right|+0 \cdot 176\left|F_{0}\right|^{2}\right) / 8$ if $\left|F_{o}\right| \leq 6 \cdot 55$. Scattering factors were taken from International Tables for X-ray Crystallography (1962) and all calculations were
carried out on an Elliott 803B computer with programs written in this laboratory (Daly, Stephens \& Wheatley, 1964). The final parameters appear in Tables 1^{*} and 2 and the bond lengths and angles involving the nonhydrogen atoms in Table 3.

Discussion. The compound shows abnormal hydrolytic properties (Fink, 1973) and it was suspected that there might be some unusual intramolecular interaction between silicon and nitrogen, or that the nitrogen valences might be planar as in $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}$ (Hedberg, 1955). In fact no unusual features were observed. The molecule has crystallographic symmetry $3\left(C_{3}\right)$ and shows considerable departures from the higher symmetry $3 m\left(C_{3 v}\right)$ (see Fig. 1); models with $3 m\left(C_{3 v}\right)$ symmetry show unfavourable intramolecular contacts. The $\mathrm{Si}-\mathrm{C}\left(s p^{2}\right)$ average length of $1.875 \AA$ is in good agreement with the value found in $\mathrm{Ph}_{4} \mathrm{Si}$ (Glidewell \& Sheldrick, 1971; Párkányi \& Sasvári, 1973). The average $\mathrm{Si}-\mathrm{C}\left(s p^{3}\right)$ length of $1.873 \AA$ may be artificially low since no allowance has been made for the effect of thermal motion on the bond lengths, and the temperature factors of Si and $\mathrm{C}(2)$ show considerable differences. Very similar values for $\mathrm{Si}-\mathrm{C}\left(s p^{2}\right)$ and $\mathrm{Si}-\mathrm{C}\left(s p^{3}\right)$ lengths have been reported previously (Chioccola \& Daly, 1963). The standard $\mathrm{Si}-\mathrm{C}\left(s p^{3}\right)$ length is $1.870 \AA$ (Sutton, 1965). The average C-C length is $1.387 \AA$. The nitrogen atom adopts a pyramidal geometry with $\mathrm{C}-\mathrm{N}-\mathrm{C}=111 \cdot 4^{\circ}$ and the bond angles at silicon show small distortions from the tetrahedral value. The ring angles at the carbon atoms bonded to silicon are both less than 120°; a similar distortion was observed in $\mathrm{Ph}_{4} \mathrm{Si}$ (Glidewell \& Sheldrick, 1971).

We thank Dr W. Fink who suggested the problem and provided the crystals.

[^0]
References

Chioccola, G. \& Daly, J. J. (1968). J. Chem. Soc. (A), pp. 1658-1663.
Daly, J. J., Stephens, F. S. \& Wheatley, P. J. (1964). Unpublished work.
Fink, W. (1973). Helv. Chim. Acta, 56, 1117-1120.
Glidewell, C. \& Sheldrick, G. M. (1971). J. Chem. Soc. (A), pp. 3127-3129.

Hedberg, K. (1955). J. Amer. Chem. Soc. 77, 6491-6492. International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203. Birmingham: Kynoch Press.
Párkányi, L. \& Sasvári, K. (1973). Period. Polytech. Chem. Eng. 17, 271-276.
Sutton, L. E. (1965). Interatomic Distances and Configuration in Molecules and Ions. Spec. Publ. No. 18. London: The Chemical Society.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30581 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 11 NZ, England.

